Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 545-556, 2019.
Article in English | WPRIM | ID: wpr-774959

ABSTRACT

Screening active natural products, rapid identification, and accurate isolation are of great important for modern natural lead compounds discovery. We hereby reported the isolation of seven new neotecleanin-type limonoids (-), seven new limonoids with 5-oxatricyclo[5.4.0.11., 4.]hendecane ring system (-), and two new precursors (-) together with four known limonoids (-) from the root barks of . Their structures, including their absolute configurations, were elucidated based on analyses of HR-ESI-MS, 1D/2D NMR, ECD spectrum calculations and single-crystal X-ray diffraction techniques. Compounds , , , , , , showed significant anti-inflammatory activities in LPS-induced RAW 264.7 cell line, BV2 microglial cells, and -stimulated THP-1 human monocytic cells. Walrobsin M () exhibited anti-inflammatory activity with IC value of 7.96±0.36 μmol/L, and down-regulated phosphorylation levels of ERK and p38 in a dose-dependent manner.

2.
Immune Network ; : 179-185, 2017.
Article in English | WPRIM | ID: wpr-191876

ABSTRACT

We investigated whether diclofenac could influence the development of antigen-presenting cells in an oxygenated cholesterol-rich environment by determining its effects on the 27-hydroxycholesterol (27OHChol)-induced differentiation of monocytic cells into mature dendritic cells (mDCs). Treatment of human THP-1 monocytic cells with diclofenac antagonized the effects of 27OHChol by attenuating dendrite formation and cell attachment and promoting endocytic function. Diclofenac inhibited the transcription and surface expression of the mDC markers of CD80, CD83, and CD88, and reduced the 27OHChol-induced elevation of surface levels of MHC class I and II molecules to the basal levels in a dose-dependent manner. It also reduced the expression of CD197, a molecule involved in DC homing and migration. These results indicate that diclofenac inhibits the differentiation of monocytic cells into mDCs, thereby potentially modulating adaptive immune responses in a milieu rich in cholesterol oxidation products.


Subject(s)
Humans , Antigen-Presenting Cells , Cholesterol , Dendrites , Dendritic Cells , Diclofenac , Oxygen
3.
The Korean Journal of Parasitology ; : 85-92, 2013.
Article in English | WPRIM | ID: wpr-216690

ABSTRACT

IL-23 and IL-12 are structurally similar and critical for the generation of efficient cellular immune responses. Toxoplasma gondii induces a strong cell-mediated immune response. However, little is known about IL-23 secretion profiles in T. gondii-infected immune cells in connection with IL-12. We compared the patterns of IL-23 and IL-12 production by THP-1 human monocytic cells in response to stimulation with live or heat-killed T. gondii tachyzoites, or with equivalent quantities of either T. gondii excretory/secretory proteins (ESP) or soluble tachyzoite antigen (STAg). IL-23 and IL-12 were significantly increased from 6 hr after stimulation with T. gondii antigens, and their secretions were increased with parasite dose-dependent manner. IL-23 concentrations were significantly higher than those of IL-12 at the same multiplicity of infection. IL-23 secretion induced by live parasites was significantly higher than that by heat-killed parasites, ESP, or STAg, whereas IL-12 secretion by live parasite was similar to those of ESP or STAg. However, the lowest levels of both cytokines were at stimulation with heat-killed parasites. These data indicate that IL-23 secretion patterns by stimulation with various kinds of T. gondii antigens at THP-1 monocytic cells are similar to those of IL-12, even though the levels of IL-23 induction were significantly higher than those of IL-12. The detailed kinetics induced by each T. gondii antigen were different from each other.


Subject(s)
Humans , Antigens, Protozoan/immunology , Cell Line , Interleukin-12/metabolism , Interleukin-23/metabolism , Monocytes/immunology , Time Factors , Toxoplasma/immunology
4.
Braz. j. med. biol. res ; 44(3): 193-199, Mar. 2011. ilus
Article in English | LILACS | ID: lil-576067

ABSTRACT

Angiotensin II (ANG II), the main effector of the renin-angiotensin system, is implicated in endothelial permeability, recruitment and activation of the immune cells, and also vascular remodeling through induction of inflammatory genes. Matrix metalloproteinases (MMPs) are considered to be important inflammatory factors. Elucidation of ANG II signaling pathways and of possible cross-talks between their components is essential for the development of efficient inhibitory medications. The current study investigates the inflammatory signaling pathways activated by ANG II in cultures of human monocytic U-937 cells, and the effects of specific pharmacological inhibitors of signaling intermediates on MMP-9 gene (MMP-9) expression and activity. MMP-9 expression was determined by real-time PCR and supernatants were analyzed for MMP-9 activity by ELISA and zymography methods. A multi-target ELISA kit was employed to evaluate IκB, NF-κB, JNK, p38, and STAT3 activation following treatments. Stimulation with ANG II (100 nM) significantly increased MMP-9 expression and activity, and also activated NF-κB, JNK, and p38 by 3.8-, 2.8- and 2.2-fold, respectively (P < 0.01). ANG II-induced MMP-9 expression was significantly reduced by 75 and 67 percent, respectively, by co-incubation of the cells with a selective inhibitor of protein kinase C (GF109203X, 5 µM) or of rho kinase (Y-27632, 15 µM), but not with inhibitors of phosphoinositide 3-kinase (wortmannin, 200 nM), tyrosine kinases (genistein, 100 µM) or of reactive oxygen species (α-tocopherol, 100 µM). Thus, protein kinase C and Rho kinase are important components of the inflammatory signaling pathways activated by ANG II to increase MMP-9 expression in monocytic cells. Both signaling molecules may constitute potential targets for effective management of inflammation.


Subject(s)
Humans , Angiotensin II/pharmacology , Inflammation/enzymology , Matrix Metalloproteinase 9/metabolism , Monocytes/drug effects , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Monocytes/metabolism , Protein Kinase C/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , /metabolism , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL